Половые клетки — сперматозоиды и яйцеклетки — образуются из специальных клеток-предшественников. Эти предшественники делятся, дочерние клетки, образовавшиеся при делении, проходят разные стадии развития, и в конце концов получается сперматозоид, готовый оплодотворить яйцеклетку, и яйцеклетка, готовая слиться со сперматозоидом. Но если предшественники сперматозоидов и сами сперматозоиды у млекопитающих образуются всю жизнь, то с яйцеклетками всё сложнее. Клетки-предшественники яйцеклеток появляются только во время эмбрионального развития, и почти все стадии созревания готовой яйцеклетки тоже происходят до рождения. Дальше почти готовые яйцеклетки останавливаются в развитии и ждут, когда настанет половая зрелость — тогда они совершают последние шаги и превращаются в настоящие яйцеклетки.
Новых яйцеклеток у женщины после появления на свет уже не образуется. Большинство их исчезает ещё до полового созревания, а те, что остались, должны сохраняться живыми и функциональными на протяжении всей жизни — точнее, до менопаузы. Но в живой клетке должен идти обмен веществ. А при обмене веществ неизбежно появляются нежелательные побочные продукты. И вот эти продукты должны накапливаться в яйцеклетках в прямом смысле годами.
Вероятно, у яйцеклеток млекопитающих здесь есть какая-то хитрость. Чтобы узнать, что это за хитрость, сотрудники Барселонского университета и Барселонского научно-технологического института сравнили митохондрии в яйцеклетках шпорцевых лягушек и в яйцеклетках человека. Органеллы митохондрии называют энергетическими станциями клетки, в них идут главные биохимические реакции, которые позволяют добывать энергию из разных химических соединений. Финальный этап этих реакций выглядит так: несколько крупных белковых комплексов, сидящих в мембране митохондрий, перебрасывают друг другу электроны, отобранные у «пищевых» молекул. Транспорт электронов помогает перекачать на одну сторону мембраны ионы водорода. В конце концов, электрон попадает на кислород, который превращается в молекулу воды, а по одну сторону мембраны скапливается много ионов водорода. Они стремятся пройти на другую сторону, где их мало, и для них открывается специальный канал в мембране, по которому они и убегают туда, куда им нужно. Но поток ионов водорода заставляет работать фермент, синтезирующий молекулу АТФ — главную энергетическую молекулу клеток.
Некоторые из электронов, путешествующих к кислороду, ускользают в сторону, бесконтрольно соединяются с кислородом и в результате в клетке накапливаются знаменитые активные формы кислорода, или кислородные радикалы. Это агрессивные молекулы-окислители, которые легко повреждают белки, липиды и другие клеточные молекулы. Кислородные радикалы — причина окислительного стресса, который вполне может довести клетку до гибели. От них можно избавляться с помощью специальных антиоксидантных систем, а можно предотвратить само их появление. Яйцеклетки млекопитающих пошли по второму пути: в них почти нет комплекса I — так называют мембранный комплекс белков, с которого начинается энергетический транспорт электронов. А раз электроны не бегут по электронтранспортной цепи, то и окислительных радикалов не образуется, то есть клетка максимально защищена от окислительного стресса. Это не значит, что в яйцеклетке за всю долгую жизнь вообще не возникает никаких проблем, никаких молекулярных дефектов, но их возникает намного меньше, чем если бы энергетический перенос электронов работал, как в обычной клетке. Поскольку от яйцеклетки зависит появление потомства, она должна как можно сильнее защититься от возможных повреждений.
Правда, сразу возникает вопрос — а как тогда яйцеклетка питается? Ведь даже в спящем виде она должна как-то поддерживать себя в живом состоянии, то есть какую-то энергию она тратить должна, а без электронотранспортной цепи яйцеклетка, получается, в буквальном смысле отключает себя от источника питания. Возможно, что она живёт на каких-то запасах; возможно, она использует другие энергетические реакции, которые дают меньше энергии, но которые более безопасны. Пока это гипотезы, но сами авторы работы собираются в ближайшее время начать новые эксперименты, которые должны ответить на вопрос — как яйцеклетки млекопитающих живут с отключённой «батарейкой».
Результаты исследований опубликованы в Nature.
Oocytes maintain ROS-free mitochondrial metabolism by suppressing complex I – Nature
Oocytes form before birth and remain viable for several decades before fertilization1. Although poor oocyte quality accounts for most female fertility problems, little is known about how oocytes maintain cellular fitness, or why their quality eventually declines with age2. Reactive oxygen species (ROS) produced as by-products of mitochondrial activity are associated with lower rates of fertilization and embryo survival3-5.